Website is intended for physicians
Search:
Всего найдено: 5

 

Abstract:

Background: pulmonary hypertension not only aggravates the course of myocardial infarction, but also significantly worsens the prognosis, increasing disability and mortality due to the steadily progressing course. The need to predict the development of pulmonary hypertension in patients with myocardial infarction is not in doubt, since a clear clinical picture manifests itself only in the late stages of the disease, when the effectiveness of the treatment reduces and its cost increases.

Aim: was to define most significant factors, influencing the development of pulmonary hypertension in the subacute period of myocardial infarction to elaborate a model for predicting this pathological condition.

Material and methods: study included 451 men aged 18-60 y.o. with a verified diagnosis of myocardial infarction. All patients underwent a standard diagnostic algorithm, including a comprehensive echocardiographic examination - in first 48 hours and at the end of the third week of the disease. The study group included 84 patients with pulmonary hypertension, which had occurred at the end of the third week of the disease at an initially normal level of mean pressure in the pulmonary artery. Control group consisted of 367 patients with a normal level of mean pulmonary artery pressure in both phases of the study or normalization of this indicator at the end of the subacute period of the disease. Using multivariate analysis of variance from the analytical base, we selected parameters associated with levels of mean pulmonary artery pressure, the proportion of patients with first­time pulmonary hypertension at the end of the subacute Ml. Then, with step-by-step and binary logistic regressions, most sensitive of them were selected for the prognostic model.

Results: study established a number of significant for the development of pulmonary hypertension in the subacute period of myocardial infarction clinical and anamnestic (heart rate, diastolic blood pressure, the presence of pulmonary edema and chronic lung diseases), laboratory (concentrations of the sodium, potassium, chloride; glucose, some parameters of lipid concentration in the blood plasma) and instrumental (the value of left atrium, end-diastolic size of the right ventricle, values of indices of end-systolic and end-diastolic left ventricular volumes, cardiac index, total pulmonary resistance, the presence of regurgitation at the aortic valve) parameters. Final prognostic model included mean pulmonary artery pressure, heart rate and the presence of aortic valve regurgitation of the second degree and higher in first 48 hours of myocardial infarction. Characteristics of the resulting model allow us to recommend it for practical use.

Conclusions: using a combination of these predictors, as well as prognostic modeling, makes it possible to distinguish among men under 60 years, a high-risk group for the development of pulmonary hypertension in the subacute period of the disease in order to conduct timely additional diagnostic and therapeutic measures.

 

References

1.     Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology and the European Respiratory Society: Endorsed by: Association for European Pediatric and Congenital Cardiology, International Society for Heart and Lung Transplantation. Eur Heart J. 2016;37(1): 67-119. PMID:26320113.

https://doi.org/10.1093/eurhearti/ehv317

2.     Haeck ML, Hoogslag GE, Boden H, et al. Prognostic Implications of Elevated Pulmonary Artery Pressure After ST-Segment Elevation Myocardial Infarction. Am J Cardiol. 2016; 118(3): 326-31. PMID: 27265675.

https://doi.orq/10.1016/i.amicard.2016.05.008

3.     Thygesen K, Alpert JS, Jaffe AS, et al. Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018;72(18):2231-2264. PMID: 30153967.

https://doi.org/10.1016/i.iacc.2O18.08.1038

4.     Lang RM, Badano LP, Mor-AviV, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16(3): 233-70. PMID: 25712077.

https://doi.org/10.1093/ehici/iev014

5.     Erlikh AD. Novel score for mortality risk prediction 6 months after acute coronary syndrome. Russian Journal of Cardiology. 2020;25(2):3416 [In Russ].

https://doi.org/10.15829/1560-4071 -2020-2-3416

6.     Sotnikov AV, Epifanov SYu, Kudinova AN etal. Predictors of recurrent ischemic damages in men under 60 years of age with myocardial infarction. Science of the young (Eruditio Juvenium) 2019; 7(4): 565-574 [In Russ].

http://doi.org/10.23888/HMJ201974565-574

7.     Panev Nl, FilimonovSN, Korotenko OYu et al. System for predicting the probability of developing respiratory failure in chronic mechanic bronchitis. Medicine in Kuzbass. 2017;16(3): 52-56 [In Russ].

8.     Bax JJ, Di Carli M, Narula J, Delgado V. Multimodality imaging in ischaemic heart failure. Lancet. 2019;393(10175):1056-1070. PMID: 30860031.

https://doi.org/10.1016/S0140-6736(18)33207-0

9.     Sheludko EG, Naumov DE, Prikhodko AG, Kolosov VP. Clinical and functional peculiarities of comorbid obstructive sleep apnea syndrome and asthma. Bulletin Physiology and Pathology o f Respiration. 2019; (71): 23-30 [In Russ].

http://doi.org/10.12737/article_5c88b5e86b9c18.75963991

10.   Chistyakova MV, Govorin AV, Radaeva EV. Opportunities for prediction of pulmonary hypertension development in patients with viral liver cirrhosis. Russian Journal of Cardiology. 2017;(4):70-74 [In Russ].

https://doi.org/10.15829/1560-4071-2017-4-70-74

11.   Agapitov LI. Diagnostics and treatment of childish pulmonary arterial hypertension. Diagnostics and treatment of childish pulmonary arterial hypertension. Lechaschi Vrach Journal. 2014; 4: 50 [In Russ].

12.   Laletin DA, Bautin AE, Rubinchik VE, Mikhailov AP. Right ventricle contractility during early postoperative period after coronary artery bypass grafting with cardiopulmonary bypass. Circulation Pathology and Cardiac Surgery. 2014; 18(3): 34-38 [In Russ].

13.   Kirillova W. Early ultrasound detection of venous congestion in pulmonary circulation in patients with chronic heart failure. Russian Heart Failure Journal. 2017; 18(3):208-212 [In Russ].

http://doi.org/10.18087/RHFJ.2017.3.2315

 

Abstract:

The authors report 44 successful implantations of original retrieval Nitinol stent-filters, unique "closed" design of which comprehensively described in the article. All the devices placed for pulmonary embolism (PE) management in patients with lower extremity and pelvic deep vein (DV) thrombosis. Authors announce absolute efficiency of their stent-filters for PE prophylaxis, and the procedure itself declared to be safe and minimally invasive.

Stent-filter implantation into iliac veins compared to standard filter placement in inferior vena cava (IVC) excludes risks of total infrarenal IVC thrombosis - the major complication of such procedures. It is also associated with early DV recanalization, that in sum radically reduces disability rate. Moreover, in case of IVC abnormalities, kinking or external compression stent-filter into iliac position remains the only option for endovascular PE management. All the above can be mentioned as advantages of using stent-filters.

At the same time authors observe that stent-filters quick incorporation into vessel wall prevented endovascular retrieval of the device in quite a number of cases. Persistent PE threat, requiring prolonged antithrombotic therapy under endovascular protection, might also contribute for low retrievability of the device. 

 

Reference

 

 

1.     Ballew K.A., Philbrick J.T., Becker D.M. Vena cava filters devices. Clin. Chest. Med. 1995; 16: 295-305.

 

 

2.     Becker D.M., Philbrick J.T., Selby J.B. Inferior vena cavafilters. Indications, safety, effectiveness. Arch. Intern. Med.1992; 152 (10): 1985-1994.

 

 

3.     Streiff M.B. Vena caval filters: a comprehensive review.Blood. 2000; 95: 3669-3677.

 

 

4.     Ferris E.J., McCowanT.C., Carver D.K., McFarland D.R.Percutaneous inferior vena caval filters: Follow-up ofseven designs in 320 patients. Radiology. 1993; 188:851-856.

 

 

5.     Mismetti P., Rivron-Guillot K., Quenet S., D cousus H.,Laporte S., Epinat M., Barral, F.G. A рrospective long-term study of 220 patients with a retrievable vena cava-filter for secondary hrevention of venous thromboembolism. Chest. 2007; 131:223-229.

 

 

6.     Rosenthal D., Wellons E.D., Lai K.M., Bikk A., Henderson V.J. Retrievable Inferior vena cava-filters: initial clinical results. Ann. Vasc. Surg. 2006; 20: 157-165.

 

 

7.     Asch M.R. Initial experience in humans with a new retrievable inferior vena cava filter. Radiology. 2002; 225:835-844.

 

 

8.     Binkert C.A., Sasadeusz K., Stavropoulos S.W. Retrievability of the recovery vena cava-filter after dwell times longer than 180 days. J. Vasc. Interv. Radiol. 2006;17: 299-302.

 

 

9.     De Gregorio M.A. et al. Retrieval of g nther tulip optional vena cava-filters 30 days after Implantation: Aprospective clinical study. J. Vasc. Interv. Radiol. 2006;17: 1781-1789.

 

 

10.   Oliva V.L., Szatmari F.et al. The jonas study: evaluationof the retrievability of the cordis optease inferio venacava-filter./ Vase. Interv. Radiol. 2005; 16: 1439-1445.

 

 

11.   Guglielmo ЕЕ, Kurtz A.B., Wechsler R.J. Prospectivecomparison of computed tomography and duplex sonography in the evaluation of recently inserted Kim-ray - Greenfield filters into the inferior vena cava. Clin.Imaging. 1990; 14:216-220.

 

 

12.   Kinney T.B., Rose S.C., Weingarten K.W. et al. IVC filter tilt and asymmetry: comparison of the the over-the-wire stainless-steel and titanium Greenfield IVC filters.J. Vasc. Interv. Radiol. 1997; 8: 1080-1082.

 

 

13.   Kinney T.B., Rose S.C. Regarding «limb asymmetry intitanium Greenfield filters».J. Vasc. Surg. 1998; 16:436-444.

 

 

14.   Прокубовский В.И., Капранов С.А., Савельев В.С.,Балан А.Н., Защеринская Н.А., Ломков С.С., Никитина А.В., Поликарпов О.В., Поликарпов И.В.Внутрисосудистый стент-фильтр. Патент РФ№ 2143246, приоритет от 03.06.99 г.

 

 

15.   Капранов С.А., Кузнецова В.Ф., Златовратский А.Г. Удаляемый стент-фильтр для профилактики тромбоэмболии легочной артерии. Международный журнал интервенционной кардиоангиологии. 2005; 7: 44.

 

 

16.   Кузнецова В.Ф., Капранов С.А., Златовратский А.Г. Применение стента-фильтра в эндоваскулярной профилактике тромбоэмболии легочной артерии. В сб. Новые технологии в хирургии. Ростов-на Дону.2005; 297.

 

 

17.   Прокубовский В.И., Капранов С.А. Эндоваскулярные вмешательства при тромбозе и эмболии. В кн.Флебология (руководство для врачей). Под ред. акад.В.С. Савельева. М.: Медицина, 2001; 351-390.

 

 

18.   Grams J., The S.H., Torres V.E.,. Andrews J.C. Nagor-ney D.M. Inferior vena cava-stenting: A safe and tffec-tive treatment for intractable ascites in patients with polycystic liver disease.J. Gastrointest. Surg. 2007; 11:985-990.

 

 

19.   Kishi K., SonomuraT., Fujimoto H., Kimura M., Yamada K., Sato M., Juri M. Physiologic tffect of stent therapy for Inferior vena cavajbstruction due to valignant liver tumor. Cardiovasc. Intervent. Radiol. 2006; 29: 75-83.

 

 

20.   Heijmen R., Bollen T., Duyndam D. et al. Endovascular venous stenting in May-Thurner syndrome.J. Cardiovasc. Surg. 2001; 42 (1): 83-87.

 

 

21.   Прокубовский В.И., Капранов С.А., МоскаленкоЕ.П. Анатомические и гемодинамические изменения нижней полой вены при профилактике тромбоэмболии легочной артерии. Ангиология и сосудистая хирургия. 2003; 2 (9): 51-60.

 

22.   Marcy P., Magne N., Frenay M. et al. Renal failure secondary to thrombotic complications of suprarenal inferior vena cava filter in cancer patients. Cardiovasc. Intervent. Radiol. 2001; 24: 257-259.

 

Abstract:

By authors it is resulted results of application of system for Angojet rheolytic trombectomy in treatment of acute thromboses of the main veins and pulmonary embolism. On the basis of the data received with use rheolytic trombectomy in system vena cava superior and vena cava inferior and pulmonaty artery thrombosis? Authors conclude, that system Jet-9000 is a modern and highly effective method of treatment of venous tromboses of varios localisation and their complications. Authors specify? That tactic of the use of this method can provide as its isolated, and conjaction application with trombolytic therapy, ballon angyoplasty, stenting and others endovascular techniques. Besides rheolytic trombectomy is an alternative at existence contraindications for standard methods of treatment acute venouse thromboses. At the same time, authors emphasize, that in some cases rheolytic thrombectomy can be main method of treatment of patients with venous patology, before considered incurable (a thrombosis vena cava inferior after cavafilter-implantation, massive pulmonary artery thrombosis).

 

 

 

Reference 

 

 

 

 

1.     Persson А.V, Davis R J., Villavicencio J.L. Deep venous thrombosis and pulmonary embolism. Surg. Clin. North Am. 1991; 71: 1195-1209.

 

 

2.     O'Donnell T.F., Browse N.L., Burnard K.G., Thomas M.L. The socioeconomic effects of an iliofemoral thrombosis./ Surg. Res. 1977; 22: 483-488.

 

 

3.     Plate G., Ohlin P., Eklof B. Pulmonary embolism in the acute iliofemoral venous thrombosis. Br. J. Surg. 1985; 72:912-915.

 

4.     Robinson D.L.,Teitelbaum G.P. Phlegmasia cerulea dolens: reatment by pulse-spray and infusion thrombolysis. Am.]. Roentgenol. 1993; 160: 1288-1290.

5.     Weaver F.A., Meacham P.W., Adkins R.B., Dean R.H. Phlegmasia cerulea dolens: therapeutic considerations. South. Med.J. 1988; 81: 306-312.

 

6.     Linder D.J., Edwards J.M., Phinney E.S. et al. Long-term hemodynamic and clinical sequelae of lower extremity deep vein thrombosis. / Vase. Surg. 1986; 4: 436-442.

 

7.     Kasirajan K., Gray В., Ouriel K. Percutaneous angiojet thrombectomy in the management of extensive deep venous thrombosis./ Vase. Interv. Radiol. 2001;12: 179-185.

 

8.     Hyun S., Kim M.D. et al. Adjunctive percutaneous mechanical thrombectomy for lower extremity deep vein thrombosis: clinical and economic outcomes. / Vase. Interv. Radiol. 2006; 17: 1099-1104.

 

 

9.     Becker G., Holden R., Rabe F. et al. Local thrombolytic therapy for subclavian and axillary vein thrombosis: treatment of thoracic inlet syndrome. Radiology. 1983; 149: 419-423.

 

 

10.   Beygui R., Olcott C., Dlaman R. Subclavian vein thrombosis: outcome analysis based on ethiology and modality of treatment. Ann. Vase. Surg. 1997; 11: 247-255.

 

 

11.   A consensus document. Thrombolysis in the management of lower limb peripheral arterial occlusion / Vase Interv. Radiol 2003; 14: 337-349.

 

12.   Watson L., Armon M. Thrombolysis for acute deepvein thrombosis. Cochrane Database Syst. Rev. 2004; CD 002783.

13.   Савельев B.C. Роль хирурга в профилактике и лечении венозного тромбоза и легочной эмболии. В кн.: 50 лекций по хирургии. Под ред. B.C. Савельева. М.: Media Medica. 2003; 92-99.

14.   Кривинш Д.К., Бейгай Р.Е., Катлапс Г.Дж., Фогарти Т.Дж. Какова роль тромбэктомии при тромбозах полой вены и илеофеморального сегмента? Ангиология и сосудистая хирургия. 1997; 1: 83-97.

 

15.   Кириенко А.И., Матюшенко А.А., Андрияшкин В.В. Тромбоз в системе нижней полой вены. В кн.: Флебология (руководство ДЛЯ врачей). Под ред. акад. B.C. Савельева. М.: Медицина. 2001; 208-279.

 

 

16.   May R., Thurner J. Ein gefassporn in der vena iliacacommunis sinistra als wahrscheinliche ursache deruberwiegende linksseitigen beckenvenenthrombose. Z. Kreisl-Forsch. 1956; 45: 912-922.

 

 

17.   Baron H.C., Sharms J., Wayne M. Iliac vein compression syndrome: A new method of treatment. Am. Surg. 2000; 66: 653-655.

 

 

18.   Burroughs K.E. New considerations in the diagnosis and therapy of deep vein thrombosis. South. Med. J. 1999; 92: 517-520.

 

 

19.   O'Donnell T.E, Browse N.L., Burnand K.G., Thomas M.L. The socioeconomic effects of iliofemoral throm bosis./ Surg. Res. 1987; 22: 483-488.

 

 

20.   Patel N.H., Stookey K.R., Ketcham D.B., Cragg A.H. Endovascular management of acute extensive iliofemoral deep venous thrombosis caused by May-Thurner syndrome./ Vase. Interv. Radwl. 2000; 11: 1297-1302.

 

 

21.   Thomas В., Kinney M.D. Update on inferior vena cava-filters./ Vase. Interv. Radiol. 2003; 14: 425-440.

 

 

22.   Becker D.M. Inferior vena cava-filters: Indication, so-fety effectivness. Arch. Intern. Med. 1992; 152: 1985-1994.

 

23.   Kaufman J.A., Kinney ТВ. et al. Guidelines for the use of retrievable and convertible vena cava-filters. Report from the society of Interventional radiology multidisciplinary consensus conference. / Vase. Interv. Radiol. 2006; 17: 449-459.

 

24.   Златовратский А.Г., Капранов С.А. Анализ причин развития тромботических окклюзии нижней полой вены после имплантации кава-фильтров. В кн.: Новые технологии в хирургии. Ростов-на Дону. 2005;281-282.

 

 

25.   Rahimtoola A., Bergun J.D. Acute pulmonary embolism: an update on diagnosis and management. Curr. Probl. Cardiol. 2005; 30: 61-114.

 

 

26.   Sharafuddin M., Hicks M. Current status of percutaneous mechanical thrombectomy. Part I. General principles./ Vase. Interv. Radiol. 1997; 8: 911-921.

 

 

27.   Sharafuddin M., Hicks M. Current status of percutaneous mechanical thrombectomy. Part II. Devices and mechanisms of action. J. Vase. Interv. Radiol. 1998; 9: 15-31.

 

 

28.   Fava M., Loyola S., Flores P. et al. Mechanical frag mentation and pharmacologic thrombolysis in massive pulmonary embolism. / Vase. Interv. Radiol. 1997; 8: 261-266.

 

 

29.   Greenfield L., Proctor M., Williams D. et al. Long-term experience with transvenous catheter pulmonary embolectomy. / Vase. Interv. Radiol. 1993; 18: 450-458.

 

 

30.   Michalis L., Tsetis D., Rees M. Case report: percuta neous removal of pulmonary artery thrombus in a patient with massive pulmonary embolism using the Hydrolyser catheter: the first human experience. Clin.Radiol. 1997; 52: 158-161.

 

 

31.   Voigtlander Т., Rupprecht H., Nowak B. et al. Clinical application of a new rheolytic thrombectomy catheter system for massive pulmonary embolism. Catheter Cardiovasc. Interv. 1999; 47: 91-96.

 

 

32.   Schmitz-Rode T, Tanssens U., Schild H. et al. Framentation of massive pulmonary embolism using pigtail rotation catheter. Chest. 1998; 114: 1427-1436.

 

 

33.   Rocek M., Peregrin J., Velimsky T Mechanical thrombectomy of massive pulmonary embolism using an Arrow-Trerotola percutaneous thrombolytic device. Eur. Radiol. 1998; 8: 1683-1685.

 

 

34.   Uflacker R., Strange C, Vujic I. Massive pulmonary embolism. Preliminary results of treatment with the Amplatz thrombectomy device. / Vase. Interv. Radiol. 1996; 7: 519-528.

 

35.   Schmitt H.-E., Jager K., Jacob A. et al. A new rotational thrombectomy catheter: system design and first clinical experiences. Cardiovasc. Interv. Radiol. 1999; 22: 504-509.

 

 

36.   Капранов С.А., Бобров Б.Ю. Эндоваскулярная роторная дезобструкция при массивной эмболии легочных артерий. В кн.: 1-й Российский съезд интервенционных кардиоангиологов. М. 2002; 12.


 

 

 

Abstract:

A case report of right ventricular outlet (RVO) stenting as palliative treatment of pulmonary artery atresia (PAA) in combination with interventricular septum defect (ISD), in situation when radical surgical intervention has high operative risk due to condition severity and low weight RVO stenting in newborn and children with low weight is made seldom and noted as a case reports. Peculiarity of this case is that intervention was made in patient with extremely low weight and age (age - 6 month, weight - 3 kg) after performed early central aorto-venous bypass and further palliative reconstruction of right ventricular outflow.

 

References

1.     Chang A.C., Hanley F.L., Lock J.E., et. al. Management and outcome of low birth weight neonates with congenital heart disease. J. Pediatr. 1994; 124: 461-6.

2.     Reddy V.M., Elhinney D.B., Sagrado T., et.al. Results of 102 cases of complete repair of congenital heart defects in patients weighing 700 to 2500 grams. Thorac. Cardiovasc. Surg. 1999; 117: 324-31.

3.     Wernovsky G., RubensteinS.D., Spray T.L. Cardiac surgery in the low-birth weight neonate: new approaches. Clin. Perinatol. 2001; 28:249-4.

4.     Laudito А., Varsha M., Bandisode J., Lucas F. et al. Right Ventricular Outflow Tract Stent as a Bridge to Surgery in a Premature Infant with Tetralogy of Fallot. Ann. Thorac. Surg. 2006; 81:744-746.

5.     Kirklin J. V., Barrat-Boyes. Cardiac surgery J V. New York: Churhill Livingstoun 2003.

6.     Sahu Raj., Syamasundar Rao., Transcatheter Stent Therapy in Children: An Update. Pediat. Therapeut. 2012, S5.

7.     Meadows J., Catheter-Based Interventions for Congenital Heart Disease Meadows Jeff. J. Clin. Exp. Cardiolog. 2012, S: 8.

8.     Gibbs J.L., Uzun O., BlackburnM.E., et. al. Right ventricular outflow stent implantation: an alternative to palliative surgical relief of infundibular pulmonary stenosis. Heart. 1997; 77:176-9.

9.     Sugiyama H., Williams W., Benson L.N. Implantation of endovascular stents for the obstructive right ventricular outflow tract Heart. 2005; 91:10581063.doi:10.1136/ hrt.2004.034819.

10.   Alwi M., Alwi M., Choo K.K., Latiff H.A., et. al. Initial results and medium-term follow-up of stent implantation in patent ductus arteriosus in ductdependent pulmonary circulation. J. Am. Coll. Cardiology 2004; 44(2):438-45. 

11.   Gladman G., Mc Crindle B.W., Williams W.G., et. al. The modified blalock-taussig shunt: clinical impact and morbidity in Fallot’s tetralogy in the currentera. J. Thorac. Cardiovasc. Surg. 1997; 114:25-30.

 

 

Abstract:

Aim: was to show capabilities of MDCT-angiography of coronary arteries in the detection and characterization of rare forms of anomalous coronary arteries from the pulmonary artery in adult patients

Materials and methods: we made retrospective study of anomalous coronary arteries from pulmonary arteries in patients who have been examined and operated in our Center for the period of 2008-2013. All patients on admission underwent: echocardiography, selective coronary angiography and MDCT coronarography Postoperatively - echocardiography and MDCT coronarography.

Results: for the period of 5 years about 30,000 patients underwent examination in our center, and congenital anomalous coronary arteries from the pulmonary artery was identified only in 6(0,02 %) cases. 4( 0,013%) of them had «infantile» type - ALCAPA. In adults, anomalous coronary arteries from the pulmonary artery revealed in 2 cases: a 31 year woman had «adult» type ALCAPA (0,003%) and 17-year boy - isolated form ARCAPA (0,003%). Preoperative MDCT provided direct visualization of anomalous coronary arteries from the pulmonary artery, displayed the spatial relationship of coronary vessels in the three-dimensional image that helped to clarify and demonstrate for cardiac surgeons individual characteristics of congenital disorder. Marked dilatation and tortuous course of trunks and branches of coronary arteries, the severity of which declined after surgical correction. Adult patients successfully underwent surgical correction: reimplantation of anomalous coronary arteries in orthotopic position in cardiopulmonary bypass with the creation of two-coronary blood supply of the heart

Conclusions: Even in cases where a definitive diagnosis of anomalous coronary arteries from the pulmonary artery can be diagnosed by echocardiography and coronary angiography, before surgery is recommended to perform MDCT angiography to clarify the anatomy and more specific spatial representation of the topography of the anomalous vessel. In the late postoperative period this method allows to assess in details the condition of coronary flow and effectiveness of coronary intervention. 

 

References

1.     Angelini P. Normal and anomalous coronary arteries: definitions and classification. Am. Heart J. 1989; 117: 418-434.

2.     Maron B.J. Triggers for sudden cardiac death in the athlete. Cardiol. Clin. 1996; 14: 195-210.

3.     Corrado D., Basso C., Rizzoli G., et al. Does sports activity enhance the risk of sudden death in adolescents and young adults? J. Am. Coll. Cardiol. 2003; 42: 1959-1963.

4.     Jakobs T., Becker C., Ohnesorge B., et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur. Radiol. 2002; 12: 1081-1087.

5.     Wollenek G., Domanig E., Salzer-Muar U., et al. Anomalous origin of the left coronary artery: a review of surgical management in 13 patients. J. Cardiovasc. Surg. 1993; 34: 399-405.

6.     Jurishica A.J. Anomalous left coronary artery; adult type. Am. Heart J. 1957; 54: 429-436.

7.     Kawara T., Tayama E., Hayashida N., et al. Anomalous Origin of the Left Coronary Artery from the Pulmonary Artery: Successful Direct Reimplantation in a 50-year-old Man. Ann.Thorac Cardiovasc Surg. 2003, 9 (3): 197-201.

8.     Williams I.A., Gersony W.M., Hellenbrand W.E. Anomalous right coronary artery arising from the pulmonary artery: a report of 7 cases and a review of the literature. Am. Heart J. 2006; 152(5): 1004-1017.

9.     Maroules C.D., Adams D.Z., Whiting E.D., et al. Anomalous Origin of the Right Coronary Artery from the Pulmonary Artery Evaluation with Use of 64-Slice Multidetector Computed Tomography. Texas Heart Institute Journal. 2013; 40(1): 93-99.

10.   Burakovskij V.I., Sharykin A.S., Garibjan V.A. Anomal'noe othozhdenie pravoj koronarnoj arterii ot legochnoj arterii v sochetanii s defektom mezhzheludochkovoj peregorodki [Anomalous right coronary artery from the pulmonary artery in conjunction with a ventricular septal defect.]. Grudnaja hirurgija. 1981; 2: 1-10 [In Russ].

11.   Burakovskij V.I., Podlozkov V.P., Ragimov F.R. Diagnostika i hirurgicheskoe lechenie defektov aortolegochnoj peregorodki, sochetajushhihsja s drugimi vrozhdennymi porokami serdca [Diagnosis and surgical treatment of defects aorto-pulmonary septum, combined with other congenital heart defects.]. Grudnaja hirurgija. 1982; 6: 13-21 [In Russ].

12.   Kacitadze Z.D. Rezul'taty hirurgicheskogo lechenija anomaij othozhdenija koronarnyh arterij ot legochnoj arterii. Avtoreferat. Diss. kand. med. Nauk [Results of surgical treatment of coronary artery anomalies of divergence from the pulmonary artery.]. M.1998; 28 [In Russ].

13.   Modi H., Ariyachaipanich A., Dia M. Anomalous origin of right coronary artery from pulmonary artery and severe mitral regurgitation due to myxomatous mitral calve disease: a case report and literature review. Journal of Invasive Cardiology. 2010; 2(4): 49-55.

14.   Yao C.T., Wang J.N., Yeh C.N., et al. Isolated anomalous origin of right coronary artery from the main pulmonary artery. Journal of Cardiac Surgery. 2005; 20(5): 487-489.

15.   Angelini P. Coronary artery anomalies-current clinical issues: definitions, classification, incidence, clinical relevance, and treatment guidelines. Tex. Heart Inst. J. 2002; 29: 271-278.

16.   Abbott M.E. Congenital Cardiac disease. Modern Medicine. Philadelphia. 1908.

17.   Abrikossoff A. Aneurysma des linken Herzventrikels mit abnormer Abgangsstelle der linken Koronararterie von der Pulmonalis bei einem funsonatlichen Kinde. Virchows Arch. Pathol. Anat. 1911; 203: 413.

18.   Keith J.D. Diseases of coronary arteries and aorta. in: Keith J.D., Rowe R.D., Vlad P., editors. General cardiac disease. 3rd ed. New York; Macmillan Publishing Co. Inc; 1978.

19.   Bland E.F., White P.D., Garland J. Congenital anomalies of the coronary arteries: report of an unusual case associated with cardiac hypertrophy. Am. Heart J. 1933; 8: 787-801.

20.   Emmanouilides G.C., Riemenschneider T.A., Allen

H.    D., Gutgesell H.P Heart disease in infants, children, and adolescents. 5th edition. Williams and Wilkins (Publishers) Ltd, Baltimore 1995; 776-779.

21.   DeLeval M.R., Yacoub M., Georgakopoulos D.I., et al. Bland-White-Garland Syndrome: Definitive echocardiographic diagnosis of a surgical treatable form of dilatative cardiomyopathy. Hell. J. Cardiol. 1991; 32: 22.

22.   Frescura C., Basso C., Thiene G., et al. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum. Pathol. 1998; 29: 689-695.

23.   Yau J.M., Singh R., Halpern E.J., Fischman D. Anomalous origin of the left coronary artery from the pulmonary artery in adults: a comprehensive review of 151 adult cases and a new diagnosis in a 53-year-old woman. Clin. Cardiol. 2011; 34: 204-210.

24.   Dodge-Khatami A., Mavroudis C., Backer C.L. Anomalous origin of the left coronary artery from the pulmonary artery: collective review of surgical therapy. Ann. Thorac. Surg. 2002; 74: 946-955.

25.   Brooks H.S.J. Two cases of an abnormal coronary artery of the heart arising from the pulmonary artery: with some remarks upon the effect of this anomaly in producing cirsoid dilatation of the vessels. J. Anat. Physiol. 1885; 20(Pt 1): 26-29.

26.   Mollet N.R., Cademartiri F., van Mieghem C.A., et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005; 112 (5): 2318-2323.

27.   Menahem S., Venables A.W., Anomalous left coronary artery from the pulmonary artery: a 15 year sample. Br. Heart J. 1987; 58: 78-84.

28.   Montaudon M., Latrabe V., Iriart X., et al. Congenital coronary arteries anomalies: Review of the literature and multidetector computed tomography (MDCT)-appearance. Surg. Radiol. Anat. 2007; 29: 343-355.

29.   Brijesh P, Kottayil M., Karunakaran J. et al. Anomalous Origin of Left Coronary Artery From Pulmonary Artery in Older Children and Adults: Direct Aortic Implantation. Ann. Thorac. Surg. 2011; 91: 549-553.

30.   Johnsrude C.L., Perry J.C., Cecchin F. Differentiating anomalous left coronary artery originating from the pulmonary artery in infants from myocarditis and dilated cardiomyopathy by electrocardiogram. Am. J. Cardiol. 1995; 75: 71-79.

31.   King D.H., Danford D.A., Huhta J.C., Gutgesell H.P Noninvasive detection of anomalous origin of the left main coronary from the pulmonary trunk by pulsed Doppler echocardiography. Am.J. Cardiol. 1985; 55: 608-717.

32.   Frommelt M.A., Miller E., Williamson J., Bergstrom S. Detection of septal coronary collaterals by color flow Doppler mapping is a marker for anomalous origin of a coronary artery from the pulmonary artery. J. Am. Soc. Echocardiogr. 2002; 15(3): 259-263.

33.   Schmidt K.G., Cooper M.J., SilvermanN.H., Stanger P Pulmonary artery origin of the left coronary artery: Diagnosis by two-dimensional echocardiography, pulsed Doppler ultrasound and colour flow mapping. J. Am. Coll. Cardiol. 1988; 11: 396-402.

34.   Tavakol M., Ashraf S., Brener S.J. Risks and Complications of Coronary Angiography: A Comprehensive Review. Global Journal of Health Science. 2012; 4(1): 65-93.

35.   Ternovoj S.K., Nikonova M. Je., Akchurin R.S., i dr. Vozmozhnosti mul'tispiral'noj komp'juternoj tomografii (MSKT) v ocenke koronarnogo rusla i ventrikulografii v sravnenii intervencionnoj koronaroventrikulografiej [Possibilities of MDCT in the evaluation of coronary disease and ventriculography in comparison intrvention coronaro ventriculography.]. REJR. 2013; 3(1): 28-35 [InRuss].

36.   Fine J.J., Hopkins C.B., Ruff N., et al. Comparison of accuracy of 64-slice cardiovascular computed tomography with coronary angiography in patients with suspected coronary artery disease. Am. J. Cardiol. 2006; 97: 173-174.

37.   Leschka S., Alkadhi H., Plass A., et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur. Heart J. 2005; 26: 1482-1487.

38.   de Jonge G.J., van Ooijen PM., Piers L.H., et al. Visualization of anomalous coronary arteries on dualsource computed tomography. Eur. Radiol. 2008; 18: 2425-243

39.   Nambi P, Sengupta R., Cheong B.Y Multislice computed tomography of a repaired anomalous left coronary artery arising from the pulmonary artery. Tex. Heart. Inst. J. 2008; 35: 485-486.

40.   Su C.S., Tsai I.C., Lin W.W., et al. Usefulness of multidetector-row computed tomography in diagnosis of anomalous origin of left coronary artery arising from the pulmonary artery. J. Chin.Med. Assoc. 2010; 73: 492-495.

41.   Schmitt R., Froehner S., Brunn J., et al. Congenital anomalies of the coronary arteries: imaging with contrastenhanced, multidetector computed tomography. Eur. Radiol. 2005; 15(6): 1110-1121. 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы